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Abstract
It is shown that Laḿe’s equationd2

dz2X+κ2 cn2(z, 1√
2
)X = 0 can be reduced to

a hyper-geometric equation. The characteristic exponents of this equation are
expressed in terms of elementary functions of the parameterκ . An analytical
condition for parametric amplification is obtained.

PACS number: 02.30.Gp

1. Introduction

Lamé’s equation

d2

dz2 X +
(
R1 + R2 sn2(z,K)

)
X = 0 (1)

where sn(z,K) is the standard Jacobian elliptic sine function of modulusK1, andR1 andR2
are numerical parameters, is common in many branches of mathematical physics.

Attention to this equation has been called recently by the fact that it plays an important
role in certain problems of particle physics and cosmology of the Very Early Universe. In
particular, it was shown [1] that in the theory of two fieldsφ andχ with potential

V (φ, χ) = λφ4

4
+
g2φ2χ2

2
the equation of motion of the fieldχ in the Heisenberg representation can be reduced to
Lamé’s equation under certain assumptions. More concretely, for the Minkowski space–
time in the linear approximation for the fieldχ , it is found that after expansion of this field

1 The elliptic sine function sn(u,K) and the elliptic cosine function cn(u,K) are defined with the help of the elliptic

integralu = ∫ φ
0

dα√
1−K2 sin2(α)

. Then, sn(u,K) = sin(φ) and cn(u,K) = cos(φ).
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over the eigenfunctions of the Laplace operator, the equation of motion for an eigenfunction
corresponding to a particular wavenumber has the form

d2

dz2 X +

(
k2 +

g2

λ
cn2

(
z,

1√
2

))
X = 0 (2)

where cn(z, 1√
2
) is the Jacobian elliptic cosine function of modulusK = 1√

2
, the parameterk

is proportional to the wave number and the ‘time’z is proportional to the ordinary Minkowski
time coordinate. In fact, the same equation is valid in the expanding Universe in a certain
regime provided that the eigenfunctions are rescaled in a proper way and the coordinatez

plays the role of so-called conformal time.

Along the real axis, cn(z, 1√
2
) is a periodic function with periodT = 4K( 1√

2
) = �2(1/4)√

π
≈

7.416, whereK(K) is the complete elliptic integral of modulusK of first type and�(x) is
the gamma function. It follows from the general theorem that equation (2) must contain
solutions in the formX1,2 = eµ1,2zP (z), whereP(z) is a periodic function of the periodT
and the coefficientsµ1, 2 are called characteristic exponents. If one of these coefficients is
real and positive, the corresponding solution describes an exponential growth of the amplitude
of the eigenfunctionX. In modern theories of matter creation in the Universe [2–4] this
growth is interpreted as a production of ‘particles’ of the fieldχ . The rate of production of the
‘particles’ is determined by the values of characteristic exponents and therefore the calculation
of these exponents is very important for such theories. Usually the calculation of characteristic
exponents is performed by numerical means and only a few cases are known with analytical
solutions. In particular, the characteristic exponents have been calculated analytically in the

paper [1] for the caseg
2

λ
= n(n+1)

2 (n is an integer).
In this note we would like to point out that the special case of equation (2) withk = 0,

d2

dz2 X + κ2 cn2
(
z,

1√
2

)
X = 0 (3)

(κ = g2

λ
) can be reduced to the hyper-geometric equation. This allows for exact calculation of

the characteristic exponents for the important case2, representing them in a remarkably simple
form (see equations (21) and (25)).

2. Reduction of the equation to the hyper-geometric equation and the characteristic
exponents

Let us consider the equation of form (3) and make the following change in the independent
variable:

y = cn4
(
z, 1√

2

)
. (4)

Then, we use the well-known relation

d

dz
cn(z,K) =

√
(1 − cn2(z,K))(K ′2 +K2cn2(z,K)) (5)

whereK ′ =
√
(1 −K2). Taking into account that in our caseK ′ = K = 1√

2
, we obtain

d

dz
= ±2

√
2y3/4

√
(1 − y)

d

dy
(6)

2 This corresponds to a long-wave approximation from the viewpoint of particle physics and cosmology.
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where the +sign (−sign) should be taken ify increases (decreases) withz. Also, we have

d2

dz2 = 8y1/2
{
y(1 − y)

d2

dy2 +

(
3

4
− 5

4
y

)
d

dy

}
. (7)

Substituting the last operator into equation (3), we see that the factory1/2 cancels and that this
equation is transformed to the standard hyper-geometric form

y(1 − y)
d2

dy2X + (γ − (α + β + 1)y)
d

dy
X − αβX = 0 (8)

whereγ = 3
4 andα, β = 1

8(1 ±
√
(1 + 8κ2)). The general solution to equation (8) can be

written in terms of two elementary solutions valid in the vicinity of the singular pointy = 0,

X = c1φ1 + c2φ2 (9)

where

φ1 = F(α, β, γ ; y) (10)

is the Gaussian hyper-geometric function, and

φ2 = y1−γ F (α + 1− γ, β + 1− γ,2 − γ ; y). (11)

Alternatively, the solution to equation (8) can be written in terms of two elementary solutions
valid in the vicinity of the singular pointy = 1,

X = c3φ3 + c4φ4 (12)

where

φ3 = F(α, β, α + β + 1− γ ; 1 − y) (13)

and

φ4 = (1 − y)γ−α−βF (γ − α, γ − β, γ + 1− α − β; 1 − y). (14)

The pairs of solutionsφ1, φ2 andφ3, φ4 are connected by the well-known relations (e.g. [5])

φ1 = Aφ3 +Bφ4 φ2 = Cφ3 +Dφ4 (15)

A = �(γ )�(γ − δ)

�(γ − α)�(γ − β)
B = �(γ )�(δ − γ )

�(α)�(β)
(16)

C = �(2 − γ )�(γ − δ)

�(1 − α)�(1 − β)
D = �(2 − γ )�(δ − γ )

�(α + 1− γ )�(β + 1− γ )
(17)

where�(x) is the Gamma function, andδ = α + β.
Let us point out that the transformation (4) is singular at the points where the functiony is

equal to zero or unity(dy
dz → 0 wheny → 0,1). A simple analysis shows that the coefficient

c2 must change its sign at the pointszidefined byy(zi) = 0 and the coefficientc4 must change
its sign at the pointszjsatisfyingy(zj ) = 1. To show that, let us consider the behaviour of the
functionX near the pointszi . Near these points, we can approximately write

X ≈ c1 + c2y
1/4 (18)

and taking into account equation (6), we have

dX

dz
≈ − c2√

2
(19)
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provideddy
dz < 0, and

dX

dz
≈ c2√

2
(20)

provideddy
dz > 0. The functionX and its derivative with respect to ‘time’zmust be continuous

functions ofz. Therefore, the coefficientc2 must change its sign at the pointszi . Similar
arguments can be used to prove that the coefficientc4 must change its sign at the pointszj
wherey(zj ) = 1.

Thusz changed over half a period of cn(z, 1√
2
), a new decomposition of the solution of

equation (8) should be made,

X = c̃1φ1 + c̃2φ2 (21)

where in general the coefficients ˜c1,2 do not coincide with the coefficientsc1, 2. The rules
for the changing of these coefficients follow directly from the arguments mentioned above if
one uses equations (9–15) taking into account the explicit form of the connection coefficients
(16, 17). It is straightforward to obtain the relation

c̃i = t ij c
j (22)

where the components of the matrixt ij have the following explicit form:

t11 = t22 =
√

2 cosπ(α − β) (23)

t12 = 8π�2(2 − γ )

�(1 − α)�(1 − β)�(1 +α − γ )�(1 +β − γ )
(24)

t21 = 8π�2(γ )

�(α)�(β)�(γ − α)�(γ − β)
. (25)

The eigenvalues of the matrixt ijare

λ1,2 =
√

2 cos π(α − β)±
√

cos 2π(α − β) (26)

andα − β =
√

1+8κ2

4 .3

Obviously, the multiplicatorsρ1,2 are equal toλ2
1,2 and the characteristic exponents are

µ1,2 = 1

T
lnρ1,2 = 2

T
ln(

√
2 cosπ(α − β)±

√
cos 2π(α − β)). (27)

In actual applications it is very important to know under which conditions a particular
solution to equation (3) experiences parametric amplification; that is, under which conditions
its amplitude increases when the ‘time’z changes over the period of cn(z, 1√

2
). To characterize

the parametric amplification, we introduce the real quantity

µ̃(κ) = Max(Re(µ1,2)). (28)

Obviously,µ̃(κ) > 0 is the condition for parametric amplification. It is easy to see that it is
satisfied whenλ1,2 are real; that is, when

n− 1

4
< α − β < n +

1

4
(29)

wheren is an integer�1. In terms of the parameterκ , these inequalities can be rewritten as√
n(2n− 1) < κ <

√
n(2n + 1). (30)

3 To obtain the eigenvaluesλ1,2, we use the well known relations�(x + 1) = x�(x) and�(1− x)�(x) = π
sin(πx) .
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The expression for the quantity ˜µ follows from equation (21); the definitions of the parameters
α andβ and the expression for the periodT :

µ̃(κ) = 2
√
π

�2
(1

4

) ln




√
2

∣∣∣∣∣ cos

(
π

√
1 + 8κ2

4

)∣∣∣∣∣ +

√√√√cos

(
π

√
1 + 8κ2

2

)
 . (31)

The quantityµ̃ attains its maximal value at

κ =
√

2n2 − 1
8 (32)

where its value is

µ̃max = 2
√
π

�2
( 1

4

) ln (1 +
√

2) ≈ 0.2377. (33)

Note that the same value has been obtained in [1] in the asymptotic limitκ → ∞.

3. Discussion

We were not able to find the simple formulae derived in the standard reference books on the
Lamé’s equation [6–8]. However, a very similar transformation between another equation of
Lamé’s type and a hyper-geometric equation has been discussed recently by Clarkson and
Olver [9] (see also [10]). They show that the hyper-geometric equation

t (1 − t)
d2

dt2
* +

(
1

2
− 7

6
t

)
d

dt
* − σ* = 0 (34)

and Laḿe’s equation

d2

du2* + 36σW(u)* = 0 (35)

whereW(u) is the Weierstrass elliptic function with parametersg2 = 0, g3 = 1
33/216

, are related
to each other by the transformation

cn(u,K) =
√

3 − 1 + (1 − t)1/3√
3 + 1− (1 − t)1/3

(36)

whereK =
√

1
2 +

√
3

4 . Obviously, the characteristic exponents of equation (29) can be obtained
by a method similar to that described above. In general, it would be very interesting to find a
general solution to the following problem: under what condition can Lamé’s equation of the
general form be transformed to a hyper-geometrical equation? The solution could be applied
to many problems of modern particle physics and cosmology.

Finally, it is interesting to note that, in principle, the same line of argument could be
applied to Laḿe’s equation of the general form. It is well known that after the change of
variabley1 = cn2(z,K) Lamé’s equation is reduced to a particular form of Heun’s equation.
Then the calculation of the characteristic exponents is reduced to solving of the connection
problem for Heun’s equation between the elementary solutions corresponding to the singular
pointsy1 = 0 andy1 = 1 (e.g. [11]). This problem can indeed be solved [11], but the
connection coefficients analogous to coefficients (16, 17) are now expressed in terms of a
complicated series which looks rather difficult for analytic treatment of the general case.
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